AIMdyn Scientists Analyze Data Driven Modal Decompositions

The Dynamic Mode Decomposition (DMD) is a tool of trade in computational data driven analysis of fluid flows. More generally, it is a computational device for Koopman spectral analysis of nonlinear dynamical systems, with a plethora of applications in applied sciences and engineering. Its exceptional performance triggered developments of several modifications that make the DMD an attractive method in data driven framework. This work offers further improvements of the DMD to make it more reliable, and to enhance its functionality. In particular, data driven formula for the residuals allows selection of the Ritz pairs, thus providing more precise spectral information of the underlying Koopman operator, and the well-known technique of refining the Ritz vectors is adapted to data driven scenarios. Further, the DMD is formulated in a more general setting of weighted inner product spaces, and the consequences for numerical computation are discussed in detail. Numerical experiments are used to illustrate the advantages of the proposed method, designated as DDMD_RRR (Refined Rayleigh Ritz Data Driven Modal Decomposition).

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s